JTC Import Export Pty Ltd Chemwatch: **5390-34** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 1 Issue Date: **03/02/2020** Print Date: **13/02/2020** L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | XtraCare Baby Wipes | |-------------------------------|----------------------------| | Synonyms | Product code: 41319; 41320 | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Clean & moisturizing baby skin. NOTES: Hazard statements relates to the solution used to impregnate the cloth wipe. | |--------------------------|---| #### Details of the supplier of the safety data sheet | Registered company name | JTC Import Export Pty Ltd | | |-------------------------|--|--| | Address | 98 South Park Drive Dandenong South VIC 3175 Australia | | | Telephone | +61 3 9532 5100 | | | Fax | +61 3 9532 6102 | | | Website | http://www.jtcimportexport.com.au | | | Email | sales@jtcimportexport.com.au | | # Emergency telephone number | Association / Organisation | JTC Import Export Pty Ltd | | |-----------------------------------|--|--| | Emergency telephone numbers | +61 3 9532 5100 (Mon-Thurs 8.30am to 5.30pm; Friday 8.30am to 3pm) | | | Other emergency telephone numbers | Not Available | | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture | Poisons Schedule | Not Applicable | |--------------------|----------------| | Classification [1] | Not Applicable | | | | # Label elements | Hazard pictogram(s) | Not Applicable | |---------------------|----------------| | | | | SIGNAL WORD | NOT APPLICABLE | #### Hazard statement(s) Not Applicable # Precautionary statement(s) Prevention Not Applicable # Precautionary statement(s) Response Not Applicable # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal Not Applicable # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** Issue Date: **03/02/2020**Print Date: **13/02/2020** See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|-----------------------------| | Not Available | | cloth wipe impregnated with | | 56-81-5 | 1.5 | glycerol | | 57-55-6 | 1.5 | propylene glycol | | 532-32-1 | 0.5 | sodium benzoate | | 61790-81-6 | 0.5 | lanolin, ethoxylated | | Not Available | 0.1 | fragrance, proprietary | #### **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | Eye Contact | If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | Not considered to cause discomfort through normal use. Discontinue use if irritation occurs | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas. Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider: - ▶ foam. - dry chemical powder. - ▶ carbon dioxide. ## Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | |------------------------|--| | dvice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | Fire/Explosion Hazard | Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Other decomposition products include: carbon dioxide (CO2) | | HAZCHEM | Not Applicable | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Wipe up. Place in clean drum then flush area with water. | |--------------|---| | | Place in clean drum then flush area with water. | Version No: 2.1.1.1 # **XtraCare Baby Wipes** Issue Date: **03/02/2020**Print Date: **13/02/2020** - Minor hazard. - ▶ Clear area of personnel. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Major Spills + C - Wear physical protective gloves e.g. Leather. Contain spill/secure load if safe to do so. - ▶ Bundle/collect recoverable product and label for recycling. - ▶ Collect remaining product and place in appropriate containers for disposal. - ► Clean up/sweep up area. - Water may be required. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling | · · · · · · · · · · · · · · · · · · · | | | |---------------------------------------|---|--| | Safe handling | No special handling procedures required. No protective clothing required due to physical form of product. | | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | | # Conditions for safe storage, including any incompatibilities | Suitable container | Check that containers are clearly labelled and free from leaks Packaging as recommended by manufacturer. | |-------------------------|---| | Storage incompatibility | None known | # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** # **Control parameters** ## OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|--|------------------------|------------------|------------------|--| | Australia Exposure Standards | glycerol | Glycerin mist | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | propylene
glycol | Propane-1,2-diol: particulates only | 10 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | propylene
glycol | Propane-1,2-diol total:
(vapour & particulates) | 150 ppm /
474 mg/m3 | Not
Available | Not
Available | Not Available | # EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------------|--|----------|-------------|-------------| | glycerol | Glycerine (mist); (Glycerol; Glycerin) | 45 mg/m3 | 860 mg/m3 | 2,500 mg/m3 | | propylene glycol | Polypropylene glycols | 30 mg/m3 | 330 mg/m3 | 2,000 mg/m3 | | propylene glycol | Propylene glycol; (1,2-Propanediol) | 30 mg/m3 | 1,300 mg/m3 | 7,900 mg/m3 | | sodium benzoate | Benzoic acid, sodium salt | 56 mg/m3 | 620 mg/m3 | 810 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |----------------------|---------------|---------------| | glycerol | Not Available | Not Available | | propylene glycol | Not Available | Not Available | | sodium benzoate | Not Available | Not Available | | lanolin, ethoxylated | Not Available | Not Available | ## OCCUPATIONAL EXPOSURE BANDING | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | | |----------------------|--|----------------------------------|--|--| | sodium benzoate | E | ≤ 0.01 mg/m³ | | | | lanolin, ethoxylated | E | ≤ 0.01 mg/m³ | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | | # MATERIAL DATA # Exposure controls | Appropriate engineering controls | None under normal operating conditions. | |----------------------------------|---| Issue Date: **03/02/2020**Print Date: **13/02/2020** #### Personal protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: - Safety glasses with side shields. - Eye and face protection For Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] national equivalent] Skin protection See Hand protection below Hands/feet protection No special equipment needed when handling small quantities. OTHERWISE: Wear general protective gloves, e.g. light weight rubber gloves. Body protection See Other protection below No special equipment needed when handling small quantities. Other protection # OTHERWISE: Overalls. - ► Ove - ▶ Barrier cream. - ► Eyewash unit. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: XtraCare Baby Wipes | Material | СРІ | |------------------|-----| | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NITRILE | С | | PE/EVAL/PE | С | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE:** As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1
P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | nformation on basic physical a | and chemical properties | | | |----------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------| | Appearance | Wet wipes with flavoured odour; partly mixes with water. | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 6-7 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | Chemwatch: **5390-34**Version No: **2.1.1.1** Page 5 of 10 **XtraCare Baby Wipes** Issue Date: **03/02/2020**Print Date: **13/02/2020** #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|---------------------------------------------------------------------------| | Chemical stability | Product is considered stable and hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** | Information | on tox | icological | effects | |----------------|---------|------------|---------| | IIIIOIIIIauoii | UII LUX | icolouicai | CHECIS | | mg - mild | |-------------------------------------------------| | mg/24h - mild | | effect observed (not irritating) ^[1] | | mg/3d Intermit Mod | | mg/7days mild | | effect observed (not irritating) ^[1] | | | | | | | | rritating * | | irritating * | | r | specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise # GLYCEROL For alvcerol: Legend: **Acute toxicity:** Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser. Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is 165 mg/m3 and 662 mg/m3 for systemic effects. **Genotoxicity:** Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage *in vitro*. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. *In vivo*, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a positive control, prevent any reliable conclusions to be drawn from the *in vivo* data. Overall, glycerol is not considered to possess genotoxic potential. Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to Chemwatch: 5390-34 Page 6 of 10 Issue Date: 03/02/2020 Version No: 2.1.1.1 Print Date: 13/02/2020 # **XtraCare Baby Wipes** carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation **Reproductive and developmental toxicity:** No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL 2000 mg/kg bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL 1180 mg/kg bw/day). The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. Because of its low chronic oral toxicity, propylene glycol was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive. Prolonged contact with propylene glycol is essentially non-irritating to the skin. Undiluted propylene glycol is minimally irritating to the eye, and can produce slight transient conjunctivitis (the eye recovers after the exposure is removed). Exposure to mists may cause eye irritation, as well as upper respiratory tract irritation. Inhalation of the propylene glycol vapours appears to present no significant hazard in ordinary applications. However, limited human experience indicates that inhalation of propylene glycol mists could be irritating to some individuals It is therefore recommended that propylene glycol not be used in applications where inhalation exposure or human eye contact with the spray mists of these materials is likely, such as fogs for theatrical productions or antifreeze solutions for emergency eye wash stations. Propylene glycol is metabolised in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), and propional dehyde (a potentially hazardous substance). Propylene glycol shows no evidence of being a carcinogen or of being genotoxic. Research has suggested that individuals who cannot tolerate propylene glycol probably experience a special form of irritation, but that they only rarely develop allergic contact dermatitis. Other investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema. One study strongly suggests a connection between airborne concentrations of propylene glycol in houses and development of asthma and allergic reactions, such as rhinitis or hives in children Another study suggested that the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly bedroom air, is linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers. Patients with vulvodynia and interstitial cystitis may be especially sensitive to propylene glycol. Women suffering with yeast infections may also notice that some over the counter creams can cause intense burning. Post menopausal women who require the use of an eostrogen cream may notice that brand name creams made with propylene glycol often create extreme, uncomfortable burning along the vulva and perianal area. Additionally, some electronic cigarette users who inhale propylene glycol vapor may experience dryness of the throat or shortness of breath. As an alternative, some suppliers will put Vegetable Glycerin in the "e-liquid" for those who are allergic (or have bad reactions) to propylene glycol. Adverse responses to intravenous administration of drugs which use PG as an excipient have been seen in a number of people, particularly with large dosages thereof. Responses may include "hypotension, bradycardia... QRS and T abnormalities on the ECG, arrhythmia, cardiac arrest, serum hyperosmolality, lactic acidosis, and haemolysis". A high percentage (12% to 42%) of directly-injected propylene glycol is eliminated/secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases, which may be due to propylene glycol's mild anesthetic / CNS-depressant -properties as an alcohol. In one case, intravenous administration of propylene glycol-suspended nitroglycerin to an elderly man may have induced coma and acidosis. Propylene glycol is an approved food additive for dog food under the category of animal feed and is generally recognized as safe for dogs with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg) Similarly, propylene glycol is an approved food additive for human food as well. The exception is that it is prohibited for use in food for cats due to links to Heinz body anemia. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For benzoates: Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol. The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds. Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye. Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers. Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed. For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur. **Mutagenicity:** All chemicals showed no mutagenic activity in *in vitro* Ames tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in* vitro chromosomal/chromatid responses have been observed, no genotoxicity was observed in the in vivo cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vitro and in vivo genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies. In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts. Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the # SODIUM BENZOATE PROPYLENE GLYCOL Chemwatch: 5390-34 Page 7 of 10 Version No: 2.1.1.1 #### **XtraCare Baby Wipes** Issue Date: **03/02/2020**Print Date: **13/02/2020** presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL = 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed. NOTE: Oral doses of 8-10g may cause nausea and vomiting, though tolerance in human is 50 g/day. Use in food limited to 0.1%. [ICI] Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity. Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) . AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC #### LANOLIN, ETHOXYLATED In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exception and variability of the hazard database and inter and intraspecies extrapolations AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. * [Emery Chemical Co.] | A suite Touleite. | × | Onnain a manialtu | × | |-----------------------------------|---|--------------------------|---| | Acute Toxicity | ^ | Carcinogenicity | ^ | | Skin Irritation/Corrosion | X | Reproductivity | X | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** ## Toxicity | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---------------------|------------------|--------------------|---------------|------------------|------------------| | XtraCare Baby Wipes | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Chemwatch: **5390-34**Version No: **2.1.1.1** # Page 8 of 10 XtraCare Baby Wipes Issue Date: **03/02/2020**Print Date: **13/02/2020** | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | |----------------------|------------------|--------------------|---|------------------|------------------| | glycerol | LC50 | 96 | Fish | >0.011-mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | 77712.039mg/L | 3 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | | LC50 | 96 | Fish | >10-mg/L | 2 | | propylene glycol | EC50 | 48 | Crustacea | 43-500mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | 19-mg/L | 2 | | | NOEC | 168 | Fish | 11-530mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | | LC50 | 96 | Fish | >100mg/L | 2 | | Power Language | EC50 | 48 | Crustacea | 650mg/L | 2 | | sodium benzoate | EC50 | 72 | Algae or other aquatic plants | >30.5mg/L | 2 | | | EC10 | 72 | Algae or other aquatic plants | 6.5mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | 0.09mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | lanolin, ethoxylated | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | | , | HA Registered Substances - Ecotoxicological Inforr
US EPA, Ecotox database - Aquatic Toxicity Data 5 | , , | | DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | glycerol | LOW | LOW | | propylene glycol | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | | | |------------------|----------------------|--|--| | glycerol | LOW (LogKOW = -1.76) | | | | propylene glycol | LOW (BCF = 1) | | | # Mobility in soil | Ingredient | Mobility | |------------------|----------------| | glycerol | HIGH (KOC = 1) | | propylene glycol | HIGH (KOC = 1) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 TRANSPORT INFORMATION** # Labels Required | • | | |------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Issue Date: **03/02/2020**Print Date: **13/02/2020** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### GLYCEROL IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO IBC Code Chapter 18: List of products to which the Code does not apply IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances #### PROPYLENE GLYCOL IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix B (Part 3) $\,$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO IBC Code Chapter 18: List of products to which the Code does not apply IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk ${\rm IMO\;MARPOL\;(Annex\;II)\;-\;List\;of\;Noxious\;Liquid\;Substances\;Carried\;in\;Bulk\;}$ IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards #### SODIUM BENZOATE IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) GESAMP/EHS Composite List - GESAMP Hazard Profiles LANOLIN, ETHOXYLATED IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) IMO IBC Code Chapter 17: Summary of minimum requirements #### **National Inventory Status** | National Inventory | Status | | |-------------------------------|---|--| | Australia - AICS | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (sodium benzoate; propylene glycol; glycerol; lanolin, ethoxylated) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | No (lanolin, ethoxylated) | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (lanolin, ethoxylated) | | | Vietnam - NCI | Yes | | | Russia - ARIPS | No (lanolin, ethoxylated) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | # **SECTION 16 OTHER INFORMATION** | Revision Date | 03/02/2020 | |---------------|------------| | Initial Date | 03/02/2020 | ## **SDS Version Summary** | Version | Issue Date | Sections Updated | |---------|------------|--| | 2.1.1.1 | 03/02/2020 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Disposal, Engineering Control, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), Fire Fighter (fire incompatibility), First Aid (eye), First Aid (skin), Personal Protection (other), Personal Protection (Respirator), Personal Protection (eye), Personal Protection (hands/feet), Spills (major), Spills (minor), Storage (storage incompatibility), Storage (storage requirement), Storage (suitable container) | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## Definitions and abbreviations PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level Chemwatch: 5390-34 Page 10 of 10 Issue Date: 03/02/2020 Version No: 2.1.1.1 XtraCare Baby Wipes Print Date: 13/02/2020 LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.