

JTC Import Export Pty Ltd

Chemwatch: **5391-37** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2

Issue Date: **12/02/2020** Print Date: **13/02/2020** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	AutoBright Auto Glass & Chrome Wipes			
Synonyms	Product code: 67508			
Other means of identification	Not Available			
Relevant identified uses of the	substance or mixture and uses advised against			
Relevant identified uses	NOTES: Hazard statements relates to the solution used to impregnate the cloth wipe. Clean auto glass.			

Details of the supplier of the safety data sheet

Registered company name	JTC Import Export Pty Ltd		
Address	98 South Park Drive Dandenong South VIC 3175 Australia		
Telephone	+61 3 9532 5100		
Fax	+61 3 9532 6102		
Website	http://www.jtcimportexport.com.au		
Email	sales@jtcimportexport.com.au		

Emergency telephone number

Emergency telephone number					
Association / Organisation	JTC Import Export Pty Ltd				
Emergency telephone numbers	+61 3 9532 5100 (Mon-Thurs 8.30am to 5.30pm; Friday 8.30am to 3pm)				
Other emergency telephone numbers	Not Available				

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance	e or mixture			
Poisons Schedule	Not Applicable			
Classification ^[1]	Not Applicable			
Label elements				
Hazard pictogram(s)	Not Applicable			
SIGNAL WORD	NOT APPLICABLE			
Hazard statement(s)				
Not Applicable				
Precautionary statement(s) Pre	evention			
Not Applicable				
Precautionary statement(s) Re	sponse			
Not Applicable				
Precautionary statement(s) Storage				
Not Applicable				
Precautionary statement(s) Dis	Precautionary statement(s) Disposal			
Not Applicable				

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name		
Not Available		cloth wipe impregnated with		
111-76-2	1-5	ethylene glycol monobutyl ether		
67-63-0	1-5	isopropanol		
26172-55-4	<1	5-chloro-2-methyl-4-isothiazolin-3-one		
2682-20-4	<1	2-methyl-4-isothiazolin-3-one		

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to ethylene glycol:

- Early treatment of ingestion is important. Ensure emesis is satisfactory.
- Test and correct for metabolic acidosis and hypocalcaemia.
- Apply sustained diuresis when possible with hypertonic mannitol.
- Evaluate renal status and begin haemodialysis if indicated. [I.L.O]
- Rapid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective.
- Correct acidosis, fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate solution.
- Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites.
- Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 days.
- Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis.

[Ellenhorn and Barceloux: Medical Toxicology]

It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. *Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600*

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result			
Advice for firefighters				
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 			

Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes.
HAZCHEM	Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. Safe handling When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Other information Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Conditions for safe storage, including any incompatibilities

Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Ingredient	Material name	TWA		STEL		Peak	Notes	
ethylene glycol monobutyl ether	2-Butoxyethanol	20 ppm / 96.9 mg/m3		242 mg/m3 / 50 ppm		Not Available	Not Available	
isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3		1230 mg/m3 / 500 ppm		Not Available	Not Available	
Material name			TEEL-1		TEEL-2	TEE	L-3	
Butoxyethanol, 2-; (Glycol ether El	Butoxyethanol, 2-; (Glycol ether EB)				120 ppm	700 ppm		
Isopropyl alcohol			400 ppm		2000 ppm	12000 ppm		
Chloro-2-methyl-4-isothiazolin-3-one, 5-		0.6 mg/m3 6.6 mg/m3		40 mg/m3				
Original IDLH			Revised	Revised IDLH				
700 ppm			Not Avai	Not Available				
2,000 ppm			Not Available					
Not Available			Not Avai	Not Available				
Not Available			Not Available					
NDING								
Occupational Exposure Band Rating		Occupational Exposure Band Limit						
D		> 0.01 to ≤ 0.1 mg/m³						
	ethylene glycol monobutyl ether isopropanol Material name Butoxyethanol, 2-; (Glycol ether Ef Isopropyl alcohol Chloro-2-methyl-4-isothiazolin-3-oi Original IDLH 700 ppm 2,000 ppm Not Available Not Available Not Available NDING Occupational Exposure Band Ra	ethylene glycol monobutyl ether 2-Butoxyethanol isopropanol Isopropyl alcohol Material name Butoxyethanol, 2-; (Glycol ether EB) Isopropyl alcohol Chloro-2-methyl-4-isothiazolin-3-one, 5- Original IDLH 700 ppm 2,000 ppm Not Available Not Available Not Available	ethylene glycol monobutyl ether 2-Butoxyethanol 20 ppm / 96. isopropanol Isopropyl alcohol 400 ppm / 98 Material name Butoxyethanol, 2-; (Glycol ether EB) Isopropyl alcohol Chloro-2-methyl-4-isothiazolin-3-one, 5- Original IDLH 700 ppm 2,000 ppm Not Available Not Available Not Available NDING Occupational Exposure Band Rating	ethylene glycol monobutyl ether 2-Butoxyethanol 20 ppm / 96.9 mg/m3 isopropanol Isopropyl alcohol 400 ppm / 983 mg/m3 Material name TEEL-1 Butoxyethanol, 2-; (Glycol ether EB) 60 ppm Isopropyl alcohol 400 ppm / 983 mg/m3 Disopropyl alcohol 400 ppm Chloro-2-methyl-4-isothiazolin-3-one, 5- 0.6 mg/m3 Original IDLH Revised 700 ppm Not Avail 2,000 ppm Not Avail Not Available Not Avail Not Available Not Avail Not Available Occupational Exposure Band Rating Occup	ethylene glycol monobutyl ether 2-Butoxyethanol 20 ppm / 96.9 mg/m3 242 mg/m3 isopropanol Isopropyl alcohol 400 ppm / 983 mg/m3 1230 mg/m3 Material name TEEL-1 Butoxyethanol, 2-; (Glycol ether EB) 60 ppm Isopropyl alcohol 400 ppm Chloro-2-methyl-4-isothiazolin-3-one, 5- 0.6 mg/m3 Original IDLH Revised IDLH 700 ppm Not Available Not Available Not Available Not Available Not Available Not Available Not Available Original IDLH Choro-2-methyl-4-isothiazolin-3-one, 5-	ethylene glycol monobutyl ether 2-Butoxyethanol 20 ppm / 96.9 mg/m3 242 mg/m3 / 50 ppm isopropanol Isopropyl alcohol 400 ppm / 983 mg/m3 1230 mg/m3 / 500 ppm Material name TEEL-1 TEEL-2 Butoxyethanol, 2-; (Glycol ether EB) 60 ppm 120 ppm Isopropyl alcohol 400 ppm 2000 ppm Chloro-2-methyl-4-isothiazolin-3-one, 5- 0.6 mg/m3 6.6 mg/m3 Original IDLH Revised IDLH 700 ppm Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available Not Available	ethylene glycol monobutyl ether 2-Butoxyethanol 20 ppm / 96.9 mg/m3 242 mg/m3 / 50 ppm Not Available isopropanol Isopropyl alcohol 400 ppm / 98.3 mg/m3 1230 mg/m3 / 500 ppm Not Available Material name TEEL-1 TEEL-2 TEE Butoxyethanol, 2-; (Glycol ether EB) 60 ppm 120 ppm 700 Isopropyl alcohol 400 ppm 2000 ppm 120 ppm 700 Chloro-2-methyl-4-isothiazolin-3-one, 5- 0.6 mg/m3 6.6 mg/m3 40 n Original IDLH Revised IDLH 700 ppm 2000 ppm 120 ppm 700 ppm Not Available Not Available 120 ppm 120 ppm 120 ppm 700 ppm 0.6 mg/m3 6.6 mg/m3 40 n 120 ppm 120 ppm	

2-methyl-4-isothiazolin-3-one	D	> 0.01 to ≤ 0.1 mg/m³
Notes:	Occupational exposure banding is a process of assigning chemicals into s adverse health outcomes associated with exposure. The output of this pro range of exposure concentrations that are expected to protect worker hea	ocess is an occupational exposure band (OEB), which corresponds to a

MATERIAL DATA

Exposure controls

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.		
	Type of Contaminant:		Air Speed:
	solvent, vapours, degreasing etc., evaporating from tank (in still air).		0.25-0.5 m/s (50-100 f/min.)
Appropriate engineering	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)		0.5-1 m/s (100-200 f/min.)
controls	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active 1-2.5 m/s (200-500 generation into zone of rapid air motion) f/min.)		
	grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). (500-2000 f/min.)		
	Within each range the appropriate value depends on:		
	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
	3: Intermittent, low production.	3: High production, heavy use	
	4: Large hood or large air mass in motion	4: Small hood-local control only	
	Simple theory shows that air velocity falls rapidly with distance with the square of distance from the extraction point (in simpl accordingly, after reference to distance from the contaminatin 1-2 m/s (200-400 f/min) for extraction of solvents generated i producing performance deficits within the extraction apparatu more when extraction systems are installed or used.	le cases). Therefore the air speed at the extraction point sho ng source. The air velocity at the extraction fan, for example n a tank 2 meters distant from the extraction point. Other m	buld be adjusted, , should be a minimum of echanical considerations,

Personal protection	
Eye and face protection	 Safety glasses with side shields Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, frequency and duration of contact, glove thickness and device tity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When only brief contact is expected, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time < 20 min Good when breakthrough time < 20 min For when glove material degrades
Body protection	See Other protection below
Other protection	Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

AutoBright Auto Glass & Chrome Wipes

Material	CPI
PE/EVAL/PE	А
NEOPRENE	В
NITRILE	В
PVC	В
BUTYL	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic

NITRILE+PVC	С	
PVA	С	
SARANEX-23	С	

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent basis, factors such

s "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Appearance	Liquid is impregnated in non- woven fabric with flavour odour; partly mixes with water.			
Physical state	Manufactured	Relative density (Water = 1)	Not Available	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	6-7	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Available	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Available	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
Ingestion	The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum.
Skin Contact	The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives . Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Chronic	Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.		
AutoBright Auto Glass &	ΤΟΧΙΟΙΤΥ	IRRITATION	
Chrome Wipes	Not Available	Not Available	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 100 mg SEVERE	
	Inhalation (rat) LC50: 449.48655 mg/l/4H ^[2]	Eye (rabbit): 100 mg/24h-moderate	
ethylene glycol monobutyl ether	Oral (rat) LD50: 250 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
etilei		Skin (rabbit): 500 mg, open; mild	
		Skin: adverse effect observed (irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: =12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate	
isopropanol	Inhalation (rat) LC50: 72.6 mg/l/4h ^[2]	Eye (rabbit): 100 mg - SEVERE	
	Oral (rat) LD50: =4396 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate	
		Skin (rabbit): 500 mg - mild	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
5-chloro-2-methyl-	dermal (rat) LD50: >1008 mg/kg ^[2]	Eye: adverse effect observed (irreversible damage) ^[1]	
4-isothiazolin-3-one	Oral (rat) LD50: 481 mg/kg ^[2]	Skin: adverse effect observed (corrosive) ^[1]	
		Skin: adverse effect observed (irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
2-methyl-4-isothiazolin-3-one	dermal (rat) LD50: 242 mg/kg ^[1]	Eye: adverse effect observed (irreversible damage) ^[1]	
	Oral (rat) LD50: 120 mg/kg ^[1]	Skin: adverse effect observed (corrosive) ^[1]	
Logandi	1 Value obtained from Europa ECUA Degistered Substances Acute toxisity 2 * Value obtained from manufacturer's SDS - Unless otherwise		

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

ETHYLENE GLYCOL MONOBUTYL ETHER	 NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASC (NZ) SDS The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce onjunctivitis. For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2820 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating and rabbits are consistent with haemolysis (with the exception of EGHE) and on-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and toxyacetic acid (BAA), are responsible for the blood cell hemolysis. Signs of toxicity in numans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to t
------------------------------------	---

Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes).

Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic.

The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted

in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species. At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol.

Chronic exposure may cause anaemia, macrocytosis, abnormally large red cells and abnormal red cell fragility.

Exposure of male and female rats and mice for 14 weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that 2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma. 1: NTP Toxicology Program Technical report Series 484, March 2000.

For ethylene glycol:

Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol. dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycole. Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12- 24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol. Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown.

Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia.

Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria , and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy. Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion. Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months.

Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multigeneration studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration. **Developmental Effects:** The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and

	rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight. Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol. Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available <i>in vivo</i> and <i>in vitro</i> laboratory studies provide consistently negative genotoxicity results for ethylene glycol.
ISOPROPANOL	Provide the second seco
5-CHLORO-2-METHYL- 4-ISOTHIAZOLIN-3-ONE	Considered to be the major sensitiser in Kathon CG (1)
2-METHYL- 4-ISOTHIAZOLIN-3-ONE	Considered to be a minor sensitiser in Kathon CG (1)
ETHYLENE GLYCOL MONOBUTYL ETHER & ISOPROPANOL & 5-CHLORO- 2-METHYL- 4-ISOTHIAZOLIN-3-ONE & 2-METHYL- 4-ISOTHIAZOLIN-3-ONE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
ISOPROPANOL & 5-CHLORO- 2-METHYL- 4-ISOTHIAZOLIN-3-ONE & 2-METHYL- 4-ISOTHIAZOLIN-3-ONE	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
5-CHLORO-2-METHYL- 4-ISOTHIAZOLIN-3-ONE & 2-METHYL- 4-ISOTHIAZOLIN-3-ONE	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oederna. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies. In light of potential adverse effects, and to ensure a harmonised risk assessment and management, the EU regulatory framework for biocides has been established with the objective of ensuring a high level of protection of human and animal health and the environment. To this aim, it is required that risk assessment of biocidal products is carried out before they can be placed on the market. A central lement in the risk assessment of the biocidal products on the biocidal substance. Humans may be exposed to biocidal products is carried out before they can be placed on the market. A central element in the risk assessment of the biocidal products are there biocidal products are commonly available for private use by non-professional users. I

Continued...

	Formaldehyde generators (releasers) are often used a following hydrolysis. The most widely used antimicrob release detectable levels of formaldehyde into the air : Many countries are placing regulatory pressure on sup Formaldehyde generators are a diverse group of chen by reacting an amino alcohol with formaldehyde ("form There is concern that when formaldehyde-releasing pi (TEA), diethanolamine (DEA), or monoethanolamine (potentially penetrate skin. One widely-discussed hypothesis states that formalde the microbial flora of in-use metalworking fluids (MWF proliferation of certain nontuberculosis mycobacteria (hypersensitivity pneumonitis (HP), also known as extri include flu-like illness accompanied by chronic dyspne According to Annex VI of the Cosmetic Directive 76/76 addition, the provisions of Annex VI state that, <i>All finished products containing formaldehyde or subs</i> "contains formaldehyde" where the concentration of for Formaldehyde-releasing preservatives have the ability releasing preservatives ensures that the actual level o ensure absence of microbial growth. The formaldehyde electron-rich groups to disrupt metabolic processes, e The material may be irritating to the eye, with prolonge conjunctivitis. NOTE: Substance has been shown to be mutagenic in cellular DNA. (1). Bruze etal - Contact Dermatitis 20: 219-39, 1989	ial compounds function by releasing f space, above working solutions, espe- opliers and users to replace formaldel nicals that can be recognised by a sm naldehyde-condensates"), reservatives are present in a formulat MEA), nitrosamines can be formed,; r hyde-condensate biocides, such as tr s). The hypothesis further asserts that NTM) in MWFs and that the subsequi- nisic allergic alveolitis, in a small perc ia, i.e., difficult or laboured respiration 80/EC, the maximum authorised conc tances in this Annex and which release tranaldehyde in the finished product e, to release formaldehyde in very small f free formaldehyde in the products is e reacts most rapidly with organic ani- ventually causing death of the organis ad contact causing inflammation. Rep	ormaldehyde once inside the microbe cell. Some cially when pH has dropped. hyde generators. all, easily detachable formaldehyde moiety, prepared on that also includes amines, such as triethanolamine hitrosamines are carcinogenic substances that can iazines and oxazolidines, may cause an imbalance in this putative microbial imbalance favours the ent inhalation of NTM-containing aerosols can cause entage of susceptible workers. Symptoms of HP entration of free formaldehyde is 0.2% (2000 ppm). In se formaldehyde must be labelled with the warning exceeds 0.05%. Il amounts over time. The use of formaldehyde- always very low but at the same time sufficient to d inorganic anions, amino and sulfide groups and sm. eated or prolonged exposure to irritants may produce
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×

Aspiration Hazard

Legend:

×

- Data available to make classification

¥ − Data either not available or does not fill the criteria for classification

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

×

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
AutoBright Auto Glass & Chrome Wipes	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-700mg/L	2
ethylene glycol monobutyl ether	EC50	48	Crustacea	ca.1-800mg/L	2
chici	EC50	72	Algae or other aquatic plants	1-840mg/L	2
	NOEC	24	Crustacea	>1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	9-640mg/L	2
	EC50	48	Crustacea	12500mg/L	5
isopropanol	EC50	96	Algae or other aquatic plants	993.232mg/L	3
	EC0	24	Crustacea	5-102mg/L	2
	NOEC	5760	Fish	0.02mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.19mg/L	4
5-chloro-2-methyl- 4-isothiazolin-3-one	EC50	48	Crustacea	0.028mg/L	4
	EC50	72	Algae or other aquatic plants	0.021mg/L	4
	NOEC	504	Crustacea	0.172mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCI
	LC50	96	Fish	0.07mg/L	4
	EC50	48	Crustacea	0.18mg/L	4
2-methyl-4-isothiazolin-3-one	EC50	72	Algae or other aquatic plants	0.05mg/L	4
	EC10	72	Algae or other aquatic plants	0.0346mg/L	2
	NOEC	96	Algae or other aquatic plants	0.01mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ethylene glycol monobutyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
5-chloro-2-methyl- 4-isothiazolin-3-one	HIGH	HIGH
2-methyl-4-isothiazolin-3-one	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
ethylene glycol monobutyl ether	LOW (BCF = 2.51)
isopropanol	LOW (LogKOW = 0.05)
5-chloro-2-methyl- 4-isothiazolin-3-one	LOW (LogKOW = 0.0444)
2-methyl-4-isothiazolin-3-one	LOW (LogKOW = -0.8767)

Mobility in soil

Ingredient	Mobility
ethylene glycol monobutyl ether	HIGH (KOC = 1)
isopropanol	HIGH (KOC = 1.06)
5-chloro-2-methyl- 4-isothiazolin-3-one	LOW (KOC = 45.15)
2-methyl-4-isothiazolin-3-one	LOW (KOC = 27.88)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Authority for disposal. Product / Packaging disposal Bury or incinerate residue at an approved site. ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant NO HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ETHYLENE GLYCOL MONOBUTYL ETHER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List	GESAMP/EHS Composite List - GESAMP Hazard Profiles
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes	IMO IBC Code Chapter 17: Summary of minimum requirements
Australia Exposure Standards	IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
Australia Inventory of Chemical Substances (AICS)	Monographs
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -	International Air Transport Association (IATA) Dangerous Goods Regulations
Part 2, Section Seven - Appendix I	International Maritime Dangerous Goods Requirements (IMDG Code)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 6}$	United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

ISOPROPANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO
IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
ILATORY LISTS
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Air Transport Association (IATA) Dangerous Goods Regulations
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations STS Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

National Inventory Status

National Inventory	Status	
Australia - AICS	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (5-chloro-2-methyl-4-isothiazolin-3-one; 2-methyl-4-isothiazolin-3-one; isopropanol; ethylene glycol monobutyl ether)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	12/02/2020
Initial Date	12/02/2020

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	12/02/2020	Ingredients, Physical Properties

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chernwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.