

Homebright Bowl Cleaner & Freshener

JTC Import Export Pty Ltd

Chemwatch: **5391-36** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **12/02/2020**Print Date: **13/02/2020**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Homebright Bowl Cleaner & Freshener
Synonyms	Product code: 67507; 67510; 67525
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Toilet/Urinal care product - Non aerosol.
--------------------------	---

Details of the supplier of the safety data sheet

Registered company name	JTC Import Export Pty Ltd
Address	98 South Park Drive Dandenong South VIC 3175 Australia
Telephone	+61 3 9532 5100
Fax	+61 3 9532 6102
Website	http://www.jtcimportexport.com.au
Email	sales@jtcimportexport.com.au

Emergency telephone number

Association / Organisation	JTC Import Export Pty Ltd	
Emergency telephone numbers	+61 3 9532 5100 (Mon-Thurs 8.30am to 5.30pm; Friday 8.30am to 3pm)	
Other emergency telephone numbers	Not Available	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
Label elements		

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.

Chemwatch: **5391-36** Page **2** of **15**

Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

P272

Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/physician.
P321	Specific treatment (see advice on this label).
P362	Take off contaminated clothing and wash before reuse.
P302+P352	IF ON SKIN: Wash with plenty of water.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
9004-82-4	7-13	sodium lauryl sulfate
68140-00-1	1-5	coconut monoethanolamide
61789-40-0	1-5	cocamidopropylbetaine
9003-01-4	NotSpec	Carbomer
1310-73-2	NotSpec	sodium hydroxide

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.

 Figure complete irrigation of the eye by keeping eyelids apart and away from eye
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

- If skin contact occurs:

 Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.
- Inhalation
- ▶ If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- ► Other measures are usually unnecessary

Ingestion

- If swallowed do **NOT** induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
 - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
 - ▶ Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
 - Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Water spray or fog.
- ► Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Fire Fighting
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- ▶ Wear full body protective clothing with breathing apparatus.

Chemwatch: 5391-36 Page 3 of 15 Issue Date: 12/02/2020 Version No: 2.1.1.1 Print Date: 13/02/2020

Homebright Bowl Cleaner & Freshener

	 Prevent, by any means available, spillage from entering drains or water course.
	Use water delivered as a fine spray to control fire and cool adjacent area.
	 Avoid spraying water onto liquid pools.
	► DO NOT approach containers suspected to be hot.
	▶ Cool fire exposed containers with water spray from a protected location.
	▶ If safe to do so, remove containers from path of fire.
	► Combustible.
	▶ Slight fire hazard when exposed to heat or flame.
	▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
	► On combustion, may emit toxic fumes of carbon monoxide (CO).
	► May emit acrid smoke.
	► Mists containing combustible materials may be explosive.
Fire/Explosion Hazard	Combustion products include:
·	carbon dioxide (CO2)
	nitrogen oxides (NOx)
	sulfur oxides (SOx)
	other pyrolysis products typical of burning organic material.
	May emit poisonous furnes.
	May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling		
Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. 	
Other information	 Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. 	

Chemwatch: **5391-36** Page **4** of **15**

Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

Suitable container

- Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ▶ Check all containers are clearly labelled and free from leaks.

Storage incompatibility

Avoid reaction with oxidising agentsAvoid strong acids, bases.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	sodium hydroxide	Sodium hydroxide	Not Available	Not Available	2 mg/m3	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
sodium lauryl sulfate	Sodium lauryl sulfate	3.9 mg/m3	43 mg/m3	260 mg/m3
sodium hydroxide	Sodium hydroxide	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
sodium lauryl sulfate	Not Available	Not Available
coconut monoethanolamide	Not Available	Not Available
cocamidopropylbetaine	Not Available	Not Available
Carbomer	Not Available	Not Available
sodium hydroxide	10 mg/m3	Not Available

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
sodium lauryl sulfate	E	≤ 0.01 mg/m³		
coconut monoethanolamide	E	≤ 0.01 mg/m³		
cocamidopropylbetaine	E	≤ 0.1 ppm		
Carbomer	E	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health			

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood - local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases

Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

► Safety glasses with side shields.

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- \cdot When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.
- P.V.C. apron.Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Homebright Bowl Cleaner & Freshener

Material	СРІ
BUTYL	A
NAT+NEOPR+NITRILE	A

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

alf-face	Full-Face
espirator	Respirator

Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Issue Date: 12/02/2020 Print Date: 13/02/2020

	1
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
NITRILE+PVC	A
PE	A
PE/EVAL/PE	A
PVC	A
SARANEX-23	A
SARANEX-23 2-PLY	A
TEFLON	A
VITON/CHLOROBUTYL	A

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or $hydrogen\ cyanide(HCN),\ B3=Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E=Sulfur$ dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Blue viscous liquid with fresh odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	1.05
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	8	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Chemwatch: **5391-36** Page **7** of **15**

Version No: **2.1.1.1**

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where Ingestion pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there Skin Contact may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Eve When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. TOXICITY IRRITATION Homebright Bowl Cleaner & Freshener Not Available Not Available TOXICITY **IRRITATION** Eye (rabbit):100 mg/24 hr-moderate dermal (rat) LD50: >2000 mg/kg[1] Oral (rat) LD50: =200-2000 mg/kg^[2] Eve: adverse effect observed (irritating)[1] sodium lauryl sulfate Skin (human): 25 mg/24 hr - mild Skin: adverse effect observed (irritating)^[1] TOXICITY IRRITATION coconut monoethanolamide Oral (rat) LD50: >2000 mg/kg[1] Not Available TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg[1] Eye: adverse effect observed (irritating)[1] Eye: primary irritant * Oral (rat) LD50: 2700 mg/kg^[2] cocamidopropylbetaine Skin: adverse effect observed (irritating)[1] Skin: primary irritant * TOXICITY IRRITATION Dermal (rabbit) LD50: >2000 mg/kg^[1] Eye: adverse effect observed (irreversible damage)^[1] Dermal (rabbit) LD50: >3000 mg/kg^[2] Skin: no adverse effect observed (not irritating)^[1] Oral (rat) LD50: >1000 mg/kg[2] Carbomer Oral (rat) LD50: >2500 mg/kg[2] Oral (rat) LD50: 146-468 mg/kg^[1] Oral (rat) LD50: 4100 $mg/kg^{[2]}$ IRRITATION TOXICITY Eye (rabbit): 0.05 mg/24h SEVERE Dermal (rabbit) LD50: 1350 mg/kg^[2] Eye (rabbit):1 mg/24h SEVERE Eye (rabbit):1 mg/30s rinsed-SEVERE sodium hydroxide Eye: adverse effect observed (irritating)^[1] Skin (rabbit): 500 mg/24h SEVERE Skin: adverse effect observed (corrosive)[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates

SODIUM LAURYL SULFATE

Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group.

Chemwatch: **5391-36** Page **8** of **15**

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver.

Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg):

C10-: 290-580

Version No: 2.1.1.1

C10-16-, and C12-; 1000-2000

C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000

C14-18. C16-18-: >5000

The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs.

Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range.

The counter ion does not appear to influence the toxicity in a substantial way.

Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg):

C12-: 200

C12-13 and C10-16-;>500

Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates.

There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates.

In skin irritation tests using rabbits (aqueous solutions, OECD TG 404):

C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive

Under occlusive conditions:

C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants

Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alpha-olefin sulfonates of comparable chain lengths.

In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only a mild irritant

Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates

Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected.

However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking.

Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals

Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium). C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies.

No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ.

Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay).

alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected.

Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day).

alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates.

Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm.

Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death).

The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs

Chemwatch: 5391-36 Page 9 of 15 Issue Date: 12/02/2020 Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Print Date: 13/02/2020

in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits.

For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental toxicants.

Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates

Alkyl sulfates (AS) anionic surfactants are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). An exception has been made for C12 AS which is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed) and R38 and R41 (CESIO 2000). AS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC.

AS are readily absorbed from the gastrointestinal tract after oral administration. Penetration of AS through intact skin appears to be minimal. AS are extensively metabolized in various species resulting in the formation of several metabolites. The primary metabolite is butyric acid-4-sulfate. The major site of metabolism is the liver. AS and their metabolites are primarily eliminated via the urine and only minor amounts are eliminated via the faeces. In rats about 70-90% of the dose was eliminated via the urine within 48 hours after oral, intravenous or intraperitoneal administration of 1 mg of AS per rat. The acute toxicity of AS in animals is considered to be low after skin contact or oral intake.

For a homologous series of AS (C8 to C16), maximum swelling of stratum corneum (the outermost layer of epidermis) of the skin was produced by the C12 homologue. This is in accordance with the fact that the length of the hydrophobic alkyl chain influences the skin irritation potential. Other studies have shown that especially AS of chain lengths C11, C12 and C13 remove most amino acids and soluble proteins from the skin during washing.

Concentrated samples of AS are skin irritants in rabbits and guinea pigs. AS are non-irritant to laboratory animals at a 0.1% concentration. C12 AS is used in research laboratories as a standard substance to irritate skin and has been shown to induce an irritant eczema. AS were found, by many authors, to be the most irritating of the anionic surfactants, although others have judged the alkyl sulfates only as irritant as laurate (fatty acid soap).

A structure/effect relationship with regard to the length of the alkyl chain can also be observed on mucous membranes. The maximum eye irritation occurs at chain lengths of C10 to C14. In acute ocular tests, 10% C12 AS caused corneal damage to the rabbit eyes if not irrigated. Another study showed that a 1.0% aqueous C12 AS solution only had a slight effect on rabbit eyes, whereas 5% C12 AS caused temporary conjunctivitis, and 25% C12 AS resulted in corneal damage.

In a 13-week feeding study, rats were fed dietary levels of 0, 40, 200, 1,000 or 5,000 ppm of C12 AS. The only test material related effect observed was an increase in absolute organ weights in the rats fed with the highest concentration which was 5,000 ppm. The organ weights were not further specified and no other abnormalities were found.

In a mutagenicity study, rats were fed 1.13 and 0.56% C12 AS in the diet for 90 days. This treatment did not cause chromosomal aberrations in the bone marrow cells.

Mutagenicity studies with Salmonella typhimurium strains (Ames test) indicate no mutagenic effects of C12 AS). The available long-term studies in experimental animals (rats and mice) are inadequate to evaluate the carcinogenic potential of AS. However, in studies in which animals were administered AS in the diet at levels of

up to 4% AS, there was no indication of increased risk of cancer after oral ingestion.

No specific teratogenic effects were observed in rabbits, rats or mice when pregnant animals were dosed with 0.2, 2.0, 300 and 600 mg C12 AS/kg body weight/day by gavage during the most important period of organogenesis (day 6 to 15 of pregnancy for mice and rats and day 6 to 18 of pregnancy for rabbits). Reduced litter size, high incidence of skeletal abnormalities and foetal loss were observed in mice at 600 mg C12 AS/kg/day, a dose level which also caused severe toxic effects in the parent animals in all three species . An aqueous solution of 2% AS was applied (0.1 ml) once daily to the dorsal skin (2 x 3 cm) of pregnant mice from day 1 to day 17 of gestation. A solution of 20% AS was tested likewise from day 1 to day 10 of gestation. The

mice were killed on days 11 and 18, respectively. A significant decrease in the number of implantations was observed when mice were treated with 20% AS compared to a control group which was dosed with water. No evidence of teratogenic effects was noted.

When aqueous solutions of 2% and 20% AS (0.1 ml) were applied once per day to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice from day 12 to day 17 of gestation no effects on pregnancy outcome were detected. Treatment with 20% AS resulted in growth retardation of suckling mice, but this effect disappeared after weaning. A 10% AS solution (0.1 ml) was applied twice daily to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice during the preimplantation period (days 0-3 of gestation). A significant number of embryos collected on day 3 as severely deformed or remained at the morula stage. The number of embryos in the oviducts was significantly greater for the mice dosed with AS as compared to the control mice. No pathological changes were detected in the major organs of the dams

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

Eye (None) None: None None rabbit None 250 ugSkin (rabbit):25 mg/24 hr-moderate Skin (None) None: None rabbit None 50 mg/24Eye (rabbit)

For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides)

The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.

The Fatty nitrogen-derived amides (FND amides) comprise four categories:

Subcategory I: Substituted Amides

Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)

Subcategory III: Imidazole Derivatives

Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies

Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II derivatives, the Subcategory I repeat-dose toxicity studies adequately

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory II.

In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested.

COCONUT MONOETHANOLAMIDE

Chemwatch: **5391-36** Page **10** of **15**

Version No: 2.1.1.1 Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole.

Some typical applications of FND Amides are:

masonry cement additive; curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers.

The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesives; coatings for articles in food contact; coatings for polyolefin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of metallic food packaging; irradiation of prepared foods; release agents in manufacture of food packaging materials, food contact surface of paper and paperboard; cellophane in food packaging; closure sealing gaskets; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health.

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals.

Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure.

Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are classified as Irritant (Xi) with the risk phrases R41

Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published. These tests indicate that allergy to cocoamide DEA is becoming more common.

Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics 5% fatty acid dialkanolamides, and the maximum content of N-nitrosodialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol is a known nitrosating agent for secondary and tertiary amines or amides. Model assays have indicated that 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978).

Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in *Salmonella typhimurium* strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of *Salmonella typhimurium* when tested with or without metabolic activation

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency)

Irritation Assessment of irritating effects: Skin contact causes irritation. May cause severe damage to the eyes. Experimental/calculated data: Skin corrosion/irritation rabbit: Irritant. Serious eye damage/irritation rabbit: Severely irritating. Respiratory/Skin sensitization Assessment of sensitization: No sensitizing effect. Experimental/calculated data: guinea pig. Non-sensitizing. Germ cell mutagenicity Assessment of mutagenicity: No mutagenic effect was found in various tests with bacteria and mammalian cell culture Experimental/calculated data: Ames - test Bacteria: negative (Directive 84/449/EEC, B.14) Carcinogenicity Assessment of carcinogenicity: The whole of the information assessable provides no indication of a carcinogenic effect. Reproductive toxicity Assessment of reproduction toxicity: The information available on the product provides no indication of reproductive toxicity. Specific target organ toxicity (single exposure) Assessment of STOT single: Based on the available information there is no specific target organ toxicity to be expected after a single exposure. Repeated dose toxicity and Specific target organ toxicity (repeated exposure) Assessment of repeated dose toxicity: The information available on the product provides no indication of toxicity on target organs after repeated exposure. *BASF Comperlan 100SDS

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Possible cross-reactions to several fatty acid amidopropyl dimethylamines were observed in patients that were reported to have allergic contact dermatitis to a baby lotion that contained 0.3% oleamidopropyl dimethylamine.

Stearamidopropyl dimethylamine at 2% in hair conditioners was not a contact sensitiser when tested neat or diluted to 30%. However, irritation reactions were observed.

A 10-year retrospective study found that out of 46 patients with confirmed allergic eyelid dermatitis, 10.9% had relevant reactions to oleamidopropyl dimethylamine and 4.3% had relevant reactions to cocamidopropyl dimethylamine.

Several cases of allergic contact dermatitis were reported in patients from the Netherlands that had used a particular type of body lotion that contained oleamidopropyl dimethylamine.

In 12 patients tested with their personal cosmetics, containing the fatty acid amidopropyl dimethylamine cocamidopropyl betaine (CAPB), 9 had positive reactions to at least one dilution and 5 had irritant reactions. All except 3 patients, who were not tested, had 2 or 3+ reaction to the 3,3-dimethylaminopropylamine (DMAPA, the reactant used in producing fatty acid amidopropyl dimethylamines) at concentrations as low as 0.05%. The presence of DMAPA was investigated via thin-layer chromatography in the personal cosmetics of 4 of the patients that had positive reactions. DMAPA was measured in the products at 50 - 150 ppm suggesting that the sensitising agent in CAPB-induced allergy is DMAPA, . The sensitisation potential of a 4% aqueous liquid fabric softener formulation containing 0.5% stearyl/palmitylamidopropyl dimethylamine was investigated using. The test material caused some irritation in most volunteers. After a rest period of 2 weeks, the subjects received challenge patches with the same concentration of test material on both arms. Patch sites were graded 48 and 96 h after patching. Eight subjects reacted at challenge, and 7 of the eight submitted to rechallenge with 4% and 0.4% aqueous formulations. No reactions indicative of sensitisation occurred at rechallenge. The test formulation containing stearyl/palmitylamidopropyl dimethylamine had no significant sensitisation potential.subjects. Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Amphoteric surfactants are easily absorbed in the intestine and are excreted partly unchanged via the faeces. Metabolisation to CO2 and short-chained fatty acids also occur. No tendency to accumulation in the organism or storage of betaines in certain organs has been detected. Betaines generally have a low acute toxicity. E.g., LD50 values for cocoamidopropylbetaine (30% solution) by oral administration have been determined to

COCAMIDOPROPYLBETAINE

Chemwatch: 5391-36 Page 11 of 15 Issue Date: 12/02/2020 Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Print Date: 13/02/2020

4,910 mg/kg body weight in rats.

Betaines do not carry any net charge, and, therefore, they can only form hydrophobic bonds with proteins in the skin. This may be the explanation for the low protein denaturation potential of betaines as the ion-binding of other surfactants contributes to denaturation. In combination with anionic surfactants a positive synergistic effect with regard to skin compatibility is often found. Compared to a 20% solution of C12 alkyl sulfate (AS; sodium lauryl sulfate) alone, decreased erythema was observed for the combination of 20% C12 AS and 10% cocoamidopropyl betaine one hour after the removal of patches. The combination of cocoamidopropyl betaine and C12 AS also reduced swelling of the skin, and generally interactions between amphoterics and AS produce less swelling and result in milder skin reactions. Concentrated betaines are expected to be irritant to skin and eyes. Diluted solutions (3-10%) are not irritant to skin, but they are mildly irritant to the eyes

No evidence of delayed contact hypersensitivity was found in guinea pigs after topically administrated solutions of 10% cocoamidopropyl betaine by using the Magnusson-Kligman maximization test. Various instances of contact allergy to cocoamidopropyl betaine have been reported. In all of the reports it was concluded that the observed skin reactions were due to the presence of 3-dimethylaminopropylamine which is an impurity in cocoamidopropyl betaine. This impurity is an intermediate in the synthesis of alkylamidopropyldimethylamines that are intermediates in the synthesis of the corresponding alkylamido betaines.

Cocoamidopropyl betaine was proven to be non-mutagenic to Salmonella typhimurium in the Ames Salmonella/microsome reverse mutation assay. Short-term genotoxicity tests have shown negative results of mutagenicity for lauryl betaine in various strains of Salmonella typhimurium

* [Van Waters and Rogers] ** [Canada Colors and Chemicals Ltd.] Toxicokinetics, metabolism and distribution. Absorption of the chemical across dermal and gastrointestinal membranes is possible based on the relatively low molecular weight of the chemical (500 Da) and given that it is a surfactant (EC, 2003). Acute toxicity. Acute oral toxicity studies in rats and mice indicated that the LD50 values of the chemical (at 30-35.61% concentration) ranged from 1800 mg/kg bw (male rats) up to 5000 mg/kg bw, with mortalities noted in most studies (CIR, 2010). Of note is an acute oral toxicity study conducted in Sprague-Dawley rats (5/sex) at a single dose of 1800 mg/kg bw (formulation containing 35.61% of the chemical), where no males but all five females died. Overall, the data suggests that mortality occurs following oral administration of the chemical and that it may be an acute oral toxicant. Therefore, based on these data the chemical may be harmful if swallowed. An acute dermal toxicity study in rats was conducted using 2000 mg/kg bw of a 31% formulation of the chemical (CIR, 2010). Irritation was observed, but there were no clinical signs of systemic toxicity or mortalities. The lack of effects in this study suggests that the chemical is likely to be of low acute dermal toxicity. Irritation. The chemical has a quaternary ammonium functional group, which is a structural alert for corrosion Numerous skin irritation studies, conducted with formulations containing 7.5-30% of the chemical, indicated that the chemical has irritant properties. The studies were, in-general, conducted under occlusive conditions, with exposure times of up to 24 hours (7.5-10%). Based on the information available, the chemical is likely to be a skin irritant. Eye irritation studies with the chemical showed that corrosive and necrotic effects occurred at 30% whereas less severe effects were observed at lower concentrations of 2.3-10% The chemical is classified with the risk phrase R36: Irritating to eyes, however, based on studies conducted on the chemical it may be a severe eye irritant. Sensitisation. The chemical has a quaternary ammonium functional group, which is a structural alert for sensitisation (Conflicting results have been obtained with the chemical in animal studies. Positive results were reported in an LLNA study (an EC3 value was not reported). In addition, positive results were obtained in two guinea pig maximisation studies conducted by a single laboratory, the first at 3% induction and 3% challenge, and the second at 0.15% induction and 0.015% challenge. However, there was no sensitisation in a guinea pig maximisation test when the chemical was tested at 6% induction and 1% challenge. In addition, no sensitisation was observed in another test in guinea pigs at 0.75% induction and 0.02% challenge. No evidence of sensitisation was reported in a HRIPT on a formulation containing the chemical at 0.6% concentration (a 10% dilution of a ~6% formulation) with 110 volunteers. In HRIPT studies on formulations containing the chemical, no evidence of sensitisation was reported at concentrations of 1.87% (88 subjects), 0.93% (93 subjects), 0.3% (100 subjects), 1.5-3.0% (141 subjects), 6.0% (210 subjects), 0.018% (27 subjects). However, positive results were observed in provocative studies conducted on formulations containing the chemical (at 0.3-1% concentration), conducted in subjects diagnosed with various forms of contact dermatitis, suggesting that the chemical may cause reactions in sensitive individuals In one study authors note that sensitisation effects of the chemical (and related compounds) are most likely due to the impurities, including DMAPA and amidopropyl dimethylamines, however, they do not exclude the possibility of the causing the sensitisation. The potential for skin sensit

Polycarboxylates are of low toxicity by all exposure routes examined.

Homopolymers(P-AA) are of low acute toxicity to the rat (LD50 > 5 g/kg bw/d) and are not irritating to the rabbit's skin and, at the most, slightly irritating to the eye. Further P-AA has no sensitising potential.

The adverse effect after repeated inhalation dosing (91-d/rat) was a mild, reversible pulmonary irritation. This effect is considered as not substance related owing to the physical property of the respirable dust, which caused local and not systemic lung effects.

There was neither evidence for a genotoxic potential of PAA using a variety of genetic endpoints in-vitro and in-vivo,nor for developmental toxicity or reprotoxicity in the rat. Based upon the available data, it is considered that exposure to polycarboxylates does not imply any particular hazard to humans

No significant acute toxicological data identified in literature search.

The Cosmetic Ingredient Review (CIR) Expert Panel noted that these crosslinked alkyl acrylates are macromolecules that are not expected to pass through the stratum corneum of the skin, so significant dermal absorption is not expected. Therefore, topically applied cosmetics are not expected to result in systemic or reproductive and developmental toxicity or to have genotoxic or carcinogenic effects upon use.

The Panel noted that cosmetic products containing these ingredients are reportedly used around the eyes, on the lips, and on other mucous membranes. Thus, crosslinked alkyl acrylates could be absorbed systemically through the relatively moist,n stratum cornea of the conjunctiva, lips, and other mucous membranes, and through ingestion when applied to the lips. However, the Panel noted that any absorption through healthy intact mucous membranes is likely to be not significant, primarily because of the relatively large molecular sizes. Furthermore, the chemically inert nature of the polymers precludes degradation to smaller absorbable species.

Absorption of the polymers and their residual monomers in cosmetic products also would be limited after application to the lips or eye area based on the relatively small fractions of the applied products that might be inadvertently ingested or make direct contact with the conjunctiva. The Carbomers (Carbopols) are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether. The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients

Little toxicity data is available for acrylic crosspolymers; the acute dermal and oral toxicity data that were found indicated that these ingredients are not very toxic. The little genotoxicity data that were available reported negative results in Ames tests. Carcinogenicity data were not found in the published literature for the polymers, but data were available for the monomers.

In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, 1% aq. dilutions of formulations containing 2% acrylates/vinyl neodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer.

Alternative test methods for ocular irritation indicated that acrylates/vinyl isodecanoate crosspolymer and a formulation containing 1% lauryl

CARBOMER

Chemwatch: **5391-36**Version No: **2.1.1.1**

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

methacrylate/glycol dimethacrylate crosspolymer are not likely ocular irritants. In studies using rabbits, undiluted acrylates/C10-30 alkyl acrylate crosspolymer produced minimal to moderate irritation, and it was considered a borderline irritant in unrinsed rabbit eyes. Acrylates crosspolymer, at 50% in olive oil, and sodium acrylates crosspolymer-2 did not appear to be ocular irritants in rabbit eyes. Two different risk assessments evaluating the carcinogenic endpoint for benzene that may be present in acrylates/ C10-30 alkyl acrylates crosspolymer resulted in different lifetime risk. One found that the risk was within the range associated with a 10exp 6 cancer risk, while the other reported a 20-fold greater risk. Final Safety Assessment: Crosslinked Alkyl Acrylates as Used in Cosmetics. Nov 2011 Cosmetic Ingredient Review (CIR) Expert Panel http://ntp.niehs.nih.gov/ntp/roc/nominations/2013/publiccomm/attachmentcir_508.pdf The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis SODIUM HYDROXIDE Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt **SODIUM LAURYL SULFATE &** onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on **CARBOMER & SODIUM** spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal **HYDROXIDE** lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus COCONUT The product has not been tested. The statement has been derived from substances/products of a similar structure or composition. MONOETHANOLAMIDE The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of COCAMIDOPROPYLBETAINE dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the & CARBOMER spongy layer (spongiosis) and intracellular oedema of the epidermis. **CARBOMER & SODIUM** The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may **HYDROXIDE** produce conjunctivitis. **Acute Toxicity** Carcinogenicity × Skin Irritation/Corrosion Reproductivity Serious Eye Damage/Irritation STOT - Single Exposure × Respiratory or Skin STOT - Repeated Exposure × sensitisation

Legend:

X – Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

Aspiration Hazard

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

Toxicity

Homebright Bowl Cleaner & Freshener	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
	Not Available	Not Available	Not Available		Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VAL	.UE	SOURCE
	LC50	96	Fish	0.59	mg/L	4
	EC50	48	Crustacea	0.67	mg/L	4
sodium lauryl sulfate	EC50	96	Algae or other aquatic plants	1.2r	ng/L	4
	BCF	1	Fish	0.85	img/L	4
	EC15	24	Crustacea	0.17	mg/L	4
	NOEC	0.08	Fish	0.00	000013mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
	LC50	96	Fish		>3mg/L	2
coconut monoethanolamide	EC50	48	Crustacea		3mg/L	2
	EC0	24	Crustacea		11mg/L	2
	NOEC	672	Fish		0.32mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
	LC50	96	Fish		=1mg/L	1
cocamidopropylbetaine	EC50	48	Crustacea	Crustacea 6.4mg/L		2
	EC50	96	Algae or other aquatic plants	Algae or other aquatic plants 0.55mg/L		2
	NOEC	672	Fish		0.16mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
Carbomer	LC50	96	Fish		27mg/L	2

Chemwatch: **5391-36** Page **13** of **15**

Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Issue Date: **12/02/2020**Print Date: **13/02/2020**

	EC50	48	Crustacea	47mg/L	2
	EC50	72	Algae or other aquatic plants	0.75mg/L	2
	NOEC	72	Algae or other aquatic plants	0.03mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
sodium hydroxide	LC50	96	Fish	125mg/L	4
	EC50	48	Crustacea	40.4mg/L	2
	EC50	96	Algae or other aquatic plants	3180000mg/L	3
	NOEC	96	Fish	56mg/L	4
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
sodium lauryl sulfate	HIGH	HIGH
Carbomer	LOW	LOW
sodium hydroxide	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation		
sodium lauryl sulfate	LOW (BCF = 7.15)		
Carbomer	LOW (LogKOW = 0.4415)		
sodium hydroxide	LOW (LogKOW = -3.8796)		

Mobility in soil

Ingredient	Mobility
sodium lauryl sulfate	LOW (KOC = 10220)
Carbomer	HIGH (KOC = 1.201)
sodium hydroxide	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

SODIUM LAURYL SULFATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Version No: **2.1.1.1**

Homebright Bowl Cleaner & Freshener

Issue Date: 12/02/2020 Print Date: 13/02/2020

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)

GESAMP/EHS Composite List - GESAMP Hazard Profiles
International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

COCONUT MONOETHANOLAMIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

COCAMIDOPROPYLBETAINE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

CARBOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Inventory of Chemical Substances (AICS)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\boldsymbol{6}$

International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model
Regulations

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model
Regulations

SODIUM HYDROXIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)

Lighted Nations Recommendations on the Transport of Dangerous Goods Modernation

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

National Inventory Status

National Inventory	Status	
Australia - AICS	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (Carbomer; coconut monoethanolamide; cocamidopropylbetaine; sodium hydroxide)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	No (Carbomer)	
Japan - ENCS	No (coconut monoethanolamide)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	12/02/2020
Initial Date	12/02/2020

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	12/02/2020	Chronic Health, Synonyms

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Chemwatch: 5391-36 Page **15** of **15** Issue Date: 12/02/2020 Version No: 2.1.1.1

Homebright Bowl Cleaner & Freshener

Print Date: 13/02/2020

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.